Multi-Scale Robust Modelling of Landslide Susceptibility: Regional Rapid Assessment and Catchment Robust Fuzzy Ensemble

> <u>Claudio Bosco</u>, Daniele de Rigo, Tom Dijkstra, Graham Sander, Janusz Wasowski [c.bosco@lboro.ac.uk]

Loughborough – LIK

Loughborough – UK

www.lboro.ac.uk

Why landslides?

- landslides can cause <u>human injury</u>, loss of life and economic <u>damages</u>, destroy construction works and cultural and natural heritage.
- landslides <u>occur in many different geological and</u> <u>environmental conditions across Europe</u>.
- Mapping or delineating areas prone to landslides is essential for land-use activities and management decision making. Unfortunately <u>one of the main challenges</u> in modelling landslides is related to the <u>assessment of their spatial</u> probability of occurrence.

Complexity:

Landslides are a complex phenomenon affected by <u>many different</u> <u>Factors</u>:

- climate
- topography
- lithology and
- land cover (in particular forest resources, natural vegetation and agriculture)

The Study Area

The study area (Rocchetta Sant'Antonio, Italy). Google Earth, 2013 Google.

Landslide events are associated with a trigger such as an earthquake, a large storm, a rapid snowmelt, or a volcanic eruption. A landslide event may include a single landslide or many thousands and can be quantified by the frequency-area distribution of the triggered landslides.

Within the study area, precipitation is the main triggering factor for landslide occurrence.

The applied methodology

Estimating landslide spatial probability may be supported by <u>many</u> <u>different analytical approaches: heuristic, deterministic and statistical</u>. Despite the many different approaches, landslide susceptibility assessment still remains a challenge.

In order to improve the spatial prediction of landslides, a combined total of <u>five different deterministic and statistical models have been applied</u> and <u>a new method based on an ensemble approach has been used for aggregating the modelling results</u>.

The models

Each susceptibility zonation has been obtained by applying heterogeneous techniques as:

- logistic regression (LR),

- relative distance similarity (RDS),
- artificial neural network (ANN)

- two different landslide susceptibility techniques based on the infinite slope stability model (SINMAP and TransSlide).

The datasets

Deterministic models

Landslides are generally induced when the <u>shear stress</u> on the slope material <u>exceeds</u> the material's <u>shear strength</u>.

Definition diagram in the infinite slope stability model

where C is the soil cohesion (kPa), γ is the soil unit weight (kN/m³), γ_w is the water unit weight (kN/m³), z is the vertical soil depth (m), z_w is the vertical water depth (m), β is slope angle (°) and ϕ is the internal friction angle (°).

Statistical techniques

Artificial Neural Network

store store the store store

A generic single layer feedforward neural network

Logistic Regression

where β_0 is the intercept and β_j are the coefficients relating covariates x_j (j=1,2, ...,k) and π is the probability of landslide occurrence

$$P(Y = 1) = \pi = \frac{1}{\left[1 + e^{\left(\beta_0 + \sum_{j=1}^k \beta_j x_j\right)}\right]}$$

Relative Distance Similarity (RDS)

The RDS <u>defines the relative distance between two values C_1 and C_2 of a given nonnegative covariate. The relative distance is a dimensionless number between 0 (maximum dissimilarity) and 1 (maximum similarity) and is simply the ratio between the minimum and the maximum value of the pair { C_1 , C_2 }:</u>

$$\frac{\min(C_1^j, C_2^j)}{\max(C_1^j, C_2^j)}$$

The RDS index of a given multi-dimensional point *c* with respect to a set *A* of reference points involves the relative distance among the pairs $\{C_{c}^{j}, C_{\alpha}^{j}\}$ for each $\alpha \in A$ and each dimension *j* of the *N*^C covariates

The Ensemble model

The ensemble approach is a reproducible D-TM applied to the results of the array of models and is based on relative-distance similarity (RDS).

In the landslide application, the indices RDS_c^{L} and RDS_c^{S} express the possibility [0,1] for c to respectively belong to L (instable areas) or S (stable areas)

$$\begin{cases} RDS_{c}^{L} = \max_{\alpha \in S^{L}} \begin{pmatrix} N^{c} \\ \Omega \\ j=1 \end{pmatrix} \begin{pmatrix} \max(\min(C_{c}^{j}, C_{\alpha}^{j}), \delta C^{j}) \\ \max(\max(C_{c}^{j}, C_{\alpha}^{j}), \delta C^{j}) \end{pmatrix} \\ RDS_{c}^{S} = \max_{\alpha \in S^{S}} \begin{pmatrix} N^{c} \\ \Omega \\ j=1 \end{pmatrix} \begin{pmatrix} \max(\min(C_{c}^{j}, C_{\alpha}^{j}), \delta C^{j}) \\ \max(\max(C_{c}^{j}, C_{\alpha}^{j}), \delta C^{j}) \end{pmatrix} \end{cases}$$

Semantic array programming paradigm:

- accurate <u>vector-based mathematical description</u> of the model can simplify complex algorithm prototyping while <u>moving mathematical reasoning directly into the source code</u> (reproducible way)

- <u>modularizing sub-models</u> and autonomous tasks with a strong effort toward their *most concise* generalization and reusability in other contexts;

- <u>semantically</u> constraining – with terse array-based constraints – the information entered in and returned by each module instead of relying on external assumptions.

The modelling results

	RDS	ANN	\mathbf{LR}	SINMAP	TransSl.	median	ENSEMB.	
MAE	0.003	0.44	0.37	0.45	0.51	0.35	0.001	
MAE U.	0.002	0.42	0.36	0.61	0.68	0.45	0	
MAE S.	0.003	0.45	0.38	0.3	0.34	0.25	0.001	
RMSE	0.02	0.47	0.43	0.54	0.58	0.4	0.019	
RMSE U.	0.01	0.45	0.4	0.65	0.7	0.47	0	
RMSE S.	0.03	0.48	0.46	0.4	0.42	0.32	0.026	
	-							

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)

- the ensemble and RDS give the lowest errors.
- <u>better performance of the statistical methods</u> when compared with deterministic approaches.
- a straightforward unsupervised ensemble might prove useful even where no additional information is available (black box output data).

The application of <u>an ensemble approach</u>, <u>especially in data-poor regions</u>, <u>could potentially</u> <u>reduce the uncertainty and mitigate local poor</u> <u>performance associated with individual models</u>, by excluding outlier estimations.

Limits of the presented approach

Because the quality of spatial <u>landslides forecast is largely</u> <u>dependent on the quality of the available datasets</u>, the bad performance of the physically based models could be linked with the lack of data.

The <u>high performance</u> showed by the <u>RDS</u> approach could be <u>linked</u> with the <u>criterion used for the selection of the training and</u> <u>testing set</u> of data. The <u>possible presence of bias in using a similar</u> <u>technique</u> for selecting the data and calculating the landslide susceptibility need to be further investigated.

Although these <u>preliminary results are promising</u>, <u>further research</u> <u>is required</u> before this method can be used to communicate the findings with relevant authorities.

Post Fire Regional Scale Rapid Assessment

- wildfires have a <u>major impact</u> especially in <u>southern Europe</u> (Mediterranean region).
- besides their <u>direct environmental impact</u>, wildfires can result in future <u>secondary effects</u> such as shallow landslides and debris flows.
- an area of approximately <u>600 km2</u> was analysed calculating the changes in pre and post-fire landslide susceptibility. <u>Six large fires were</u> selected from the European Forest Fires Information System (EFFIS).

Pre and Post-re shallow landslide susceptibility in Northern Puglia (Italy). Ground layer: Google Earth, c 2013 Google.

<u>almost 10% of the burnt area changes from stable to unstable</u>
<u>conditions</u>

- The application of the <u>SINMAP</u> model in post-fire landslide susceptibility analysis has to be considered as <u>a first attempt</u> for applying these techniques at a regional scale.
- Future research will be carried out to extend the multi-model ensemble architecture from catchment to regional scale, overcoming the possible unavailability of observations on stable and unstable areas.

Thank you