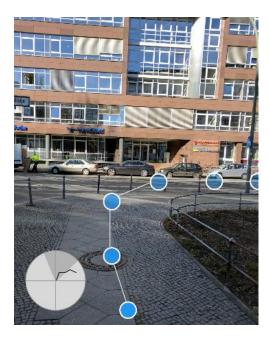
Mobile Location-based Augmented Reality Framework


Simon Burkard, Frank Fuchs-Kittowski, Sebastian Himberger, Fabian Fischer (HTW Berlin) Stefan Pfennigschmidt (Fraunhofer FOKUS Berlin)

Mobile Location-based Augmented Reality Framework

Agenda

- 1. Introduction
- 2. Mobile location-based augmented reality
- 3. Applications of location-based AR
- 4. SDKs for location-based AR
- 5. Concept of a mobile location-based AR framework
- 6. Implementation and usage
- 7. Summary

1. Introduction

Mobile Location-based AR Framework: motivation and main idea

Motivation:

- Mobile augmented reality (mAR) technology has great economic potential and is suitable for the mass market (e.g. Pokemon GO, Snapchat)
- There are hardly any SDKs that can be used to develop customized geo-based AR applications as important functionality and customization options are missing

Main idea:

- Concept and implementation of a framework (GeoAR SDK) that integrates the core functionality of location-based mAR applications
- Target group: experienced app developers who do not wish to have to acquire expert knowledge in computer vision and AR

Goals:

- Support of a wide range of GeoAR use cases
- great customizability of developed applications in terms of functionality and design

Augmented Reality

What is Augmented Reality (AR)?

Human perception of real-world environment is supplemented with digital computer-generated content

→ AR has already reached our daily lives, however: Growing interest in AR as enabling technology in the mobility space

Mobile augmented Reality

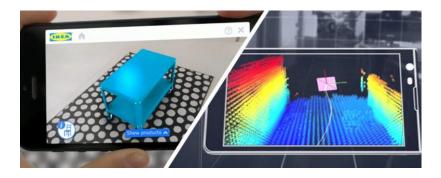
What is mobile Augmented Reality (mAR)?

Overlaying virtual information onto the real world


- using mobile devices
- on the local surroundings
- Smartphones & tablets as suitable platform for mAR applications
 - Growing availability and computing power
 - Integration of sensors that are necessary to realize mAR (compass, GPS, camera etc.)
- Fields of applications, e.g.:
 - Marketing and advertisement (e.g. IKEA app)
 - Tourism (display of points of interests)
 - Games

Location-based AR vs. Image-based AR

Location-based AR (Geo-AR)


Technical realization:

- **GPS sensor** for determination of position
- IMU sensors (compass, accelerometer, gyroscope) for determination of orientation

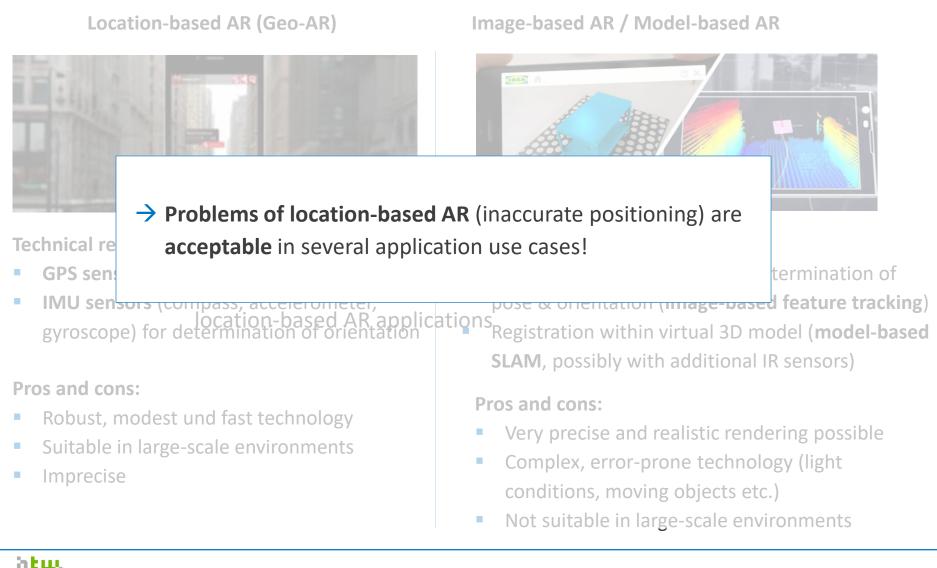
Pros and cons:

- Robust, modest und fast technology
- Suitable in large-scale environments
- Imprecise

Image-based AR / Model-based AR

Technical realization:

- Analysis of camera image for determination of pose & orientation (feature tracking)
- Registration within virtual 3D model (model-based SLAM)


Pros and cons:

- Very precise and realistic rendering possible
- Complex, error-prone technology (light conditions, moving objects etc.)
- Not suitable in large-scale environments

Location-based AR vs. Image-based AR

hschule für Technik Wirtschaft Berlin ersity of Applied Sciences

3. Applications of geo-based AR

Area information

Display of specific information about the user's environment in the camera image (e.g. tourist attractions, rivers etc.)

Object information

Display of specific information on a particular object in the immediate environment (e.g. exhibits in open-air museums)

Navigation

Display of georeferenced waypoints (or arrows) in the camera image along a navigation route

Games

htuu

schule für Techni Wirtschaft Berlin

Display of game elements on top of the camera image. The real world becomes part of the playing field (e.g. Pokemon Go)

9

3. Applications of geo-based AR

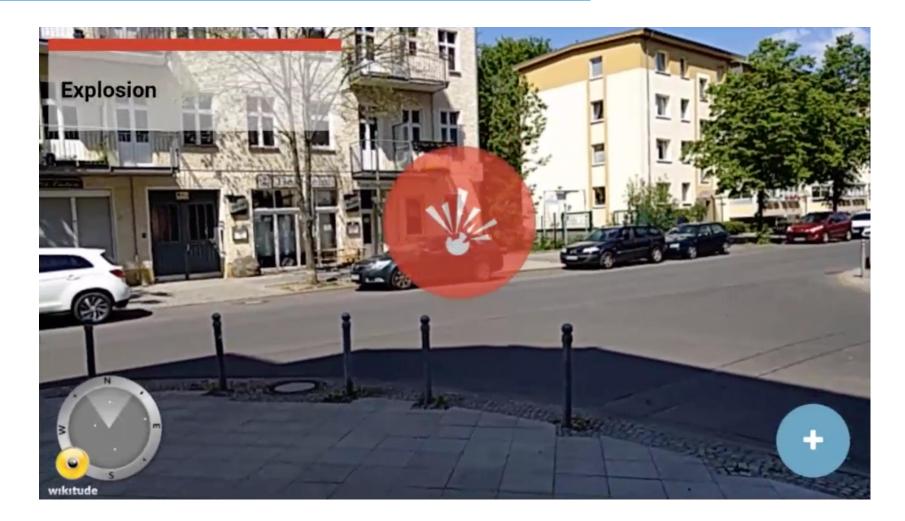
General functional requirements

- Presentation of spatial objects with
 - one geographic reference (POI, 3D model)
 - several geographic references (polyline, polygon)
- Dynamic creation of adaptable content:
 - different types of objects depending on user context
 - with different, dynamic properties (size, color), e.g. depending on distance to object
- User interaction with objects (e.g. click on object)
- Camera control and accessible camera image (e.g. capture photo function)

Analysis of existing geoAR-SDKs

 Purpose of analysis: study of various existing geoAR-SDKs with regard to their functionality and possible applications

- Examination criteria:
 - Non-functional requirements: e.g. platforms, supported programming languages, available licenses, documentation, current status
 - Functional requirements: presentation of AR objects (2D/3D POIs), customization of appearance, access to AR object screen coordinates, radar, object events (e.g. onClick, onFocus), photo capture functionality


Overview of existing geoAR-SDKs

- Results: ~40-50 mAR SDKs found
 - ~20 of them identified as geoAR SDKs (however, half of them are outdated/not available)
 - → There are hardly any current SDKs available with working geoAR support

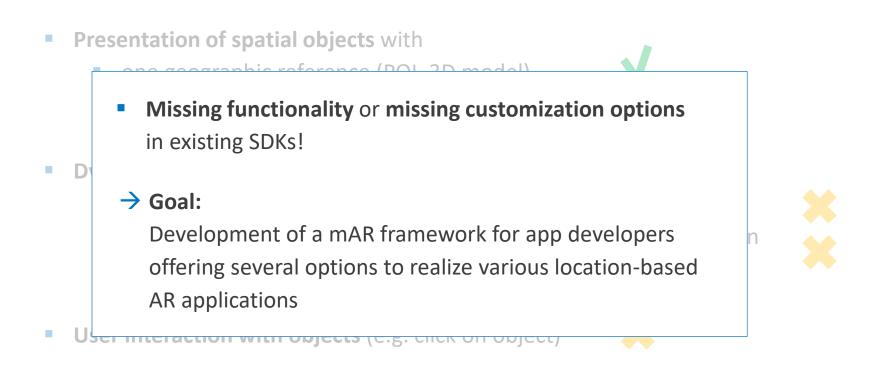
#	name / provider	licence	last update	comments
1	3DAR	Unkown	2010	not up-to-date / no longer available
2	52 North: GeoAR	Apache 2.0	2013	not up-to-date / no longer available
3	Argon3	Open Source	2015	only iOS / browser-based
4	ARIab	Commercial	2013	not up-to-date / no longer available
5	Inglobe Technologies: ARmedia	Commercial	2016	barely documented; focus on image-based 3D tracking
6	ARPA	Unkown	2014	not up-to-date / no longer available
7	ARToolKit	GPLv3	2016	focus on image-based AR; GPS/IMU integration only on iOS
8	AugView	Commercial	2016	GIS system with AR functionality; no actual SDK
9	aumentia	Custom	2014	focus on image-based AR; geo-location only in iOS
10	Awila (Esri)	Commercial	2014	not up-to-date / no longer available
11	beyondAR	Apache v2	2014	some customization possible (low level); slighty outdated
12	Droidar	GPLv3	2013	some customization possible (low level); outdated; V2 is closed source
13	Hoppala	Unkown	2011	not up-to-date / no longer available
14	Instantreality (Fraunhofer IGD)	Unkown	2016	AR framework not available for mobile AR
15	Kudan	Commercial	2016	GPS integration apparently only on iOS ; focus on SLAM
16	Layar	Commercial	2016	customization possible according to docs; SDK currently not available
17	LibreGeoSocial	Unkown	2010	not up-to-date / no longer available
18	Metaio	Commercial	2015	not up-to-date / no longer available (bought by Apple in 2015)
19	Minvera	GPLv3	2011	not up-to-date / no longer available
20	Mixare	GPLv3	2012	not up-to-date / no longer available
21	PanicAR (Vuframe)	Commercial	2014	some customization possible (low level); free for non-profit projects
22	WearScript	Apache 2.0	2014	supports GPS-based AR; apparently only for Google Glass
23	Wikitude	Commercial	2016	some customization possible with certain limitations (high level)

Existing geoAR-SDKs – Example: Wikitude SDK

International Symposium on Environmental Software Systems (ISESS 2017), Zadar – 12.05.2017

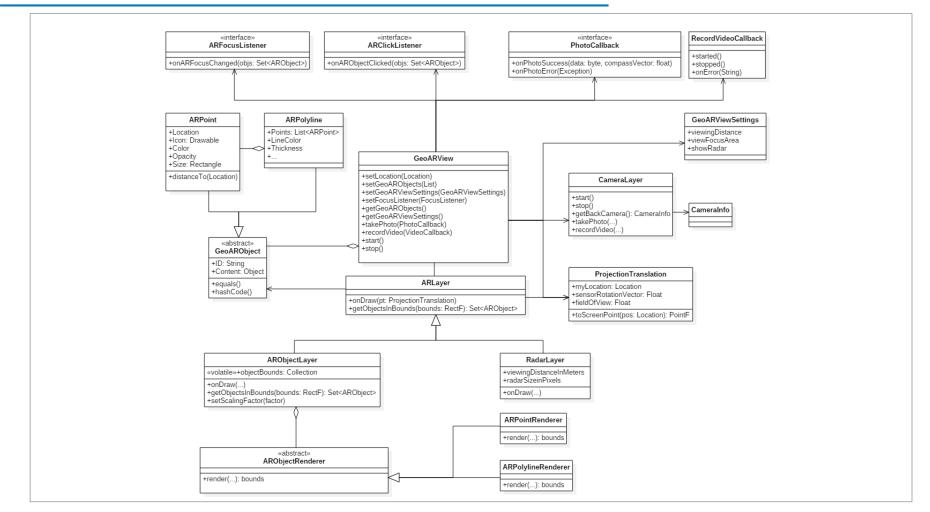
Weakness of existing SDKs

- Presentation of spatial objects with
 - one geographic reference (POI, 3D model)
 - several geographic references (polyline, polygon)
- Dynamic creation of adaptable content:
 - different types of objects depending on user context
 - with different, dynamic properties (size, color), e.g. depending on distance to object
- User interaction with objects (e.g. click on object)
- Camera control and accessible camera image (e.g. capture photo function)



Weakness of existing SDKs

• Camera control and accessible camera image (e.g. capture photo function)


5. Concept of a mobile location-based AR framework

- **ARView** with own lifecycle controlling several layers:
 - Camera image
 - Overlay of GeoAR objects
 - Radar view (optional)

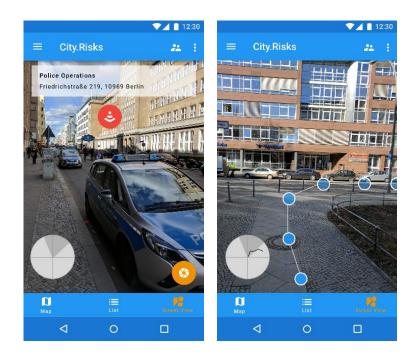
- Internal camera control and implementation of core AR functionalities, e.g. 3D-2D projection of all AR objects based on current device position and orientation
- GeoARObject:
 - Single ARPoint (POI) or list of ARPoints (polygon, polyline)
 - Adaptable appearance (icon, color, opacity, size, thickness etc.) and 3D position / geographic location (longitude, latitude, altitude)
 - Full access to 2D screen coordinates of all projected AR objects
- Interaction via event model
 - Access to visible AR objects (onFocus/onClick)
 - Access to current camera images (PictureListener)

5. Concept of a mobile location-based AR framework

Framework implementation with Android SDK

MoLAR v0.5

6. Implementation and usage


Sample application: City.Risk

EU project "City.Risks":

- Idea: IT solutions to prevent and mitigate security risks in cities
- With the aid of smartphones, citizens actively contribute to combatting crime and increasing the sense of security

Applications with AR integration:

- Ongoing incidents: citizens report crimes (e.g. fire, explosion etc.) via smartphones.
 AR is used to visualize information about ongoing crime incidents in the area
- Navigation: user is navigated out of a dangerous area to a safe destination using AR methods

RISKS IN URBAN ENVIRONMENTS

6. Summary: Mobile location-based AR framework

- Location-based AR is suitable for the mass market. Disadvantages compared with image-based AR are acceptable for several applications (Example: Pokemon Go).
- There are hardly any mature and convenient SDKs available for app developers to realize individual and customized geoAR applications. Existing SDKs usually offer limited functionality or limited customization options.
- The presented framework is designed as 'low-level' framework for Android:
 - It addresses app developers without expert knowledge in computer vision
 - It allows the development of customized geoAR applications and allows the realization of a wide range of geoAR applications

Thank you! Questions?

M.Sc. Simon Burkard HTW Berlin s.burkard@htw-berlin.de