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Air Pollution: Public Health and the 
Effects on the Environment 

 Significant risk factor for multiple health situations including eye 

irritation, breathing difficulties, lung cancer, heart diseases and 

respiratory infections. 

 Cause many negative effects on the environment: decreased 

visibility, acid rain, global warming, climate change, water quality 

deterioration and ecosystems destruction. 

 Importance of assessing air-quality 
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Air Quality Monitoring (AQM) 
Station and Sensors

 Today, many air-pollution studies based on data 
acquired from AQM.

 Provides continuous and accurate measurements.

 Expansive to build and operate 

 Sited mainly near ‘hot- spots’- where the pollution 
level might be high or near places of interest

 Sensors – many benefits same problem

Information obtained from AQM 

has to be generalized with 
mathematical methods
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Spatial Coverage - Interpolation 
Schemes

 Interpolation is a mathematical method 

of constructing continuous function  

within the range of measured points.

 Environmental interpolation: 

 Deterministic: influence diminishes with 

distance (IDW, Nearest Neighbor)

 Geostatistical: autocorrelation, asses 

the statistical relationships among the 

measured points (Kriging)

 Focus on: IDW and Ordinary Kriging

paulbourke.net
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What’s the problem with IDW 



IDW: Equation Analysis 

 Let 𝑐𝑗 be the value to be estimated, 𝑐𝑖 is the known value, 
𝑑𝑖𝑗 is the distance between these points

 The interpolation function using IDW is (where 𝑑𝑖𝑗 ≠ 0): 

 All interpolated values over the study area are a weighted 
average of the measurements points. 

 Extremum value obtained at the measuring locations only

 Not considering the location of pollution source.

 Not considering physicochemical characteristics of pollutant
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HTBI: Hough-Transform-based 
Interpolation Scheme

Detection of 
sources’ locations 
and emission rates

Creation of dense 
spatial pollution 

map



Hough Transform

 Cartesian space Parametric space

http://lab.must.or.kr
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Proof of Concept – Source Detection



HTBI Notation
Let {𝑆} be a set of sources of specific pollutant, with emission 
rates {𝑄}. 

Let 𝐴 be a continues pollution signal generated by {𝑆}, 
defined over a geographical area Ω. 

{𝑆} are located at Ԧ𝛾𝜖Ω. 

Let {𝑎} be a finite set of samples of signal 𝐴, taken in locations 
{𝜔} ⊂ 𝛺. 

Interpolation aims at estimating 𝐴 over the entire space Ω, 
based on the set of samples {𝑎}

We assume 𝐴 is complies with a uniform model over entire Ω.



Stage #1 Source Detection by HTBI

 Each sample 𝑎𝑖 is a weighted combination of the 

contributions from all the sources emissions, 𝑄, under 
some dispersion model, 𝑀. Hence 𝑎𝑖 is given by:

 All sensors’ measurements can be represented by the 
following matrices multiplication:

 Given [𝑀], we assume that there exists matrix 𝐸, which 
satisfies :

𝑎𝑖 = 𝑀𝑖 ∙ 𝑄
𝑇

𝑄 = [𝐸] Ԧ𝑎𝑇

Ԧ𝑎 = 𝑀 ∙ 𝑄𝑇



Source Detection by HTBI  cont. 

 Focus on single source detection

 We divide the feature space Ω into  𝑁 disjoint catchments, 𝐶𝑛 ⊆ Ω

 For each of the catchments, an estimated emission rate 

෠𝑄𝑖
𝑛 is calculated, based on accepted measurements from 

single sample 𝑎𝑖:

where 𝑒 is a single row of 𝐸

 A full hypothetical emission rate:

෠𝑄𝑖
𝑛 = 𝑒 ∙ 𝑎𝑖

෠𝑄
𝑛
= [𝐸] ∙ Ԧ𝑎𝑇



Source Detection by HTBI  cont. 

 Let 𝜎𝑛 be the standard deviation (STD) of ෠𝑄𝑛 :

 The catchment with the lowest 𝜎 is the approximate 

location of 𝑆, i.e. 𝛾:

 Once the source location, 𝛾, is obtained, the emission rate 

of 𝑆 is estimated by the average of the catchment’s 
estimates:

𝛾 = 𝑀𝐼𝑁 (𝜎𝑛)

𝜎𝑛 =  𝑆𝑇𝐷( ෠𝑄𝑛)

෠𝑄𝛾=
ത
෠𝑄𝛾



Dispersion Models

 Radial : 

 Gaussian Plume Dispersion (GPD) model :
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𝑄
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(Buhmann, 2003)

(Ermak, 1977)



Stage #2: Creation of Dense Spatial 
Pollution Map

 We can now estimate the entire Ω:

𝐶𝑛 = 𝑀 ∙ ෠𝑄𝛾



Computational Simulation

 Geographical area Ω with a 
size of 20km2

 Q = 8 ton/hour

 For Gaussian plume model:

 Effective stack-height:  
120m

 Wind:

Speed = 4 m/sec

Direction = 285o

Stability class: stable

Additive white Gaussian noise with SNR of 10%



Computational Simulation -

Sensor # Radial GPD

(1) 0.180 0

(2) 2.586 0

(3) 3.35*e-10 6.59*e-30

(4) 1.60*e-16 282.5981

(5) 1.65*e-20 6.20*e-17

(6) 1.23*e-30 1.1097

(µg/m3) (µg/m3)



Results #1:  Radial Dispersion Model

IDW Kriging HTBI



Results #2: Gaussian Dispersion Model

IDW Kriging HTBI



Uncertainty of the Models
 Additive white Gaussian noise on both ambient 

concentrations, wind speed and direction with 

differential SNR

 Radial Model: shows stability even with SNR > 50% 

(SNR of 3dB)

 Gaussian Model: Shows dependency on the 

catchments size: 

For cell size of 40m2, our algorithm showed stability

up to 10% SNR.

For cell size of 20m2, the HTBI showed higher 

sensitivity to noise - only up to 5% SNR (13 dB). 

optimussbr.com



Future Work

 Future work, carried out these days, is 

focusing on the implementation of the 

method on a real-world problem. 

 Preliminary results obtained, reveal the 

high potential inherent in our method

 Much work to be done to adapt HTBI to 

real conditions

 In particularly, the existing dispersion 

models are based on several preliminary 

assumptions that are not always 

consistent with the actual situation
dearfuture.com

asaf.n@Technion.ac.il


