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Unresolved modeling issues

HYDROECOLOGICAL ENGINEERING 

ADVANCED DECISION SUPPORT (HEADS)

 Original data behind legacy simulation models used for basin 
planning are rarely questioned or reviewed

 Past research upon which many parameters are based are 
difficult to repeat – leaving legacy data and analysis unchanged

- crop ET data, irrigation diversions (magnitude and  
scheduling)

 Political implications – collusion between water agencies and 
stakeholders – “use it or lose it” doctrine, use set to “water 
right” 

 Problem gets worse over time as new basin planning models are 
developed – re-calibration of these tools is time consuming and 
expensive (despite past issues with calibration – especially sub-
regional scale models)



LESSON 1
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 Minor methodological algorithmic differences can have 
significant impacts on model simulation results even when 
models use the same input data.

 The sequence in which certain hydrologic parameters are 
accounted for in the model can also impact model simulation 
results.

 These impacts become more pronounced during unusual water 
year types – floods, extended droughts which impose more 
stress on the hydrologic system

 Models are rarely compared “head-to-head”, often because of 
scaling differences, model area aggregation/disaggregation 
issues and differences in data and data reduction 
methodologies.



STUDY OBJECTIVES

HYDROECOLOGICAL ENGINEERING 

ADVANCED DECISION SUPPORT (HEADS)

 Compare underlying conceptual models for two major 
Basin-scale groundwater/surface water simulation models in 
California – CVHM2 (MODFLOW-FMP) and C2VSIM (IWFM) 

 Run simulations of the two models comparing pumpage
estimates (equated to residual water requirements)

 Assess relative model accuracy and reliability



How do you estimate pumpage, recharge, and 
changes in storage with few or no data?
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Groundwater & Agriculture

Irrigation from groundwater resources often 
dominates the water budget … 

… but pumpage is often unmeasured

Method:
• groundwater pumpage as land-surface 

water budget “closure term”

Data requirements:
• crops
• weather/climate
• surface water diversions
• irrigation efficiency

Credit:  Maples, 2017, UC Davis



How to estimate pumpage and recharge with few or no data?
Answer: Pumpage is the “closure term” for the land-surface water budget

coupled approaches

(i.e., MODFLOW-FMP2 and 

IWFM)
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Credit:  Maples, 2017, UC Davis

uncoupled approaches
(e.g. Belitz & Phillips, 1992; Fogg et al., 2002) 

coupled approaches
(e.g., MODFLOW-FMP2 and IWFM)



Coupled approaches - methodological differences
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FACTORS
1. evapotranspiration
2. soil moisture
3. routing
4. prioritization 

Credit:  Maples, 2017, UC Davis

IDC – Irrigation Demand Calculator 
IWFM model pre-processor
California Dept. of Water Resources

FMP – Farm Management Process
OWHM agricultural hydrology pre-processor
US Geological Survey
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IDC Methodology
True root-zone “Control Volume”

FMP2 Methodology
Root-zone “Control Interface”

(no soil-zone storage)
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Model conceptual root zone control volume 

Credit:  Maples, 2017, UC Davis



Evapotranspiration and soil moisture
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Credit:  Maples, 2017, UC Davis

1. evapotranspiration
2. soil moisture
3. routing
4. prioritization 
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Coupled approach
methodological 

differences

IDC – Irrigation Demand Calculator FMP2 – Farm Management Process



Soil moisture and water accounting (routing)
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Credit:  Maples, 2017, UC Davis

1. evapotranspiration
2. soil moisture
3. routing
4. prioritization 
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Coupled approach
methodological 

differences

IDC – Irrigation Demand Calculator FMP2 – Farm Management Process



Hydrological process allocation prioritization
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Credit:  Maples, 2017, UC Davis

1. evapotranspiration
2. soil moisture
3. routing
4. prioritization
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Coupled 
approaches

methodological 
differences
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IDC – Irrigation Demand Calculator FMP2 – Farm Management Process
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Annual agricultural pumping quantities

~ 2X GW pumping

~ 1.3X ET

constant deep percolation temporally-variable deep percolation

poor correlation 

Hypothetical Problem
identical input parameters:

crops, SW diversions, ppt., irrigation eff.
(Schmid et al., 2011, Dogrul et al., 2011) 

priority: 1

2

4

3
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C2VSIM – IDC-IWFM CVHM2-MODFLOW FMP

Credit:  Maples, 2017, UC Davis
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Sub-regional scale

Regional scale

CVHM C2VSim
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In general  greater differences for 
sub-regional scale estimates

Cumulative ∆  Groundwater Storage

CVHM C2VSim

Credit:  Maples, 2017, UC Davis
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Sub-regional scale

sub-region 10

sub-region 11

sub-region 12

sub-region 13

CVHM C2VSim
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Cumulative ∆  Groundwater Storage

CVHM C2VSim

CVHM C2VSim

CVHM C2VSim

Credit:  Maples, 2017, UC Davis



LESSON 2
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 Modelers don’t question basic modeling assumptions that are 
disconnected from their mainstream expertise i.e irrigation 
efficiency, irrigation diversions – relying instead on past 
published data and agency data reports and bulletins

 Model sensitivity to these potentially important factors is rarely 
analyzed and updated in the model

 There are analytical techniques and complementary models that 
could be used to validate model input, parameter values and 
modeling results

 Modelers rarely have the time or scope in budgets to perform 
these analyses – perception that resources are better spent on 
model calibration



STUDY OBJECTIVES
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 Investigate known anomalies in CVHM2 Basin groundwater 
model using the APSIDE model

 Develop APSIDE model for five highly relevant agricultural water 
districts where there is high quality available field data 
(Grassland Bypass Project monitoring for selenium 
management).

 Address model discrepancies (if real) through plan to collect 
CVHM model inputs using more direct approach if feasible



Four water districts selected for APSIDE model study 
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Salinity management options simulated by APSIDE
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 Increase irrigation efficiency by re-using drain water to blend 
with good irrigation water

 Improve on-farm drainage management, recycle surface and 
subsurface drainage water

 Grow more salt-tolerant crops, allowing use of recycled water 
after plant germination 

 Fallow or retire agricultural land 

 Utilize the assimilative capacity of the San Joaquin River in a 
coordinated fashion to discharge limited amounts of salt load 
without exceeding salinity objectives

 APSIDE considers the salinity consequences and economic costs 
of salinity management options



Positive mathematical programming
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 Relies on concept of dual variables “shadow prices” to infer 
unobserved cost differences among activities

 Two stage procedure – (a) calibration using traditional 
programming model (b) computation of marginal cost function 
after crop acreage constraints removed

 Linear marginal cost function for each crop activity – quadratic 
form appended to objective function

 Used to estimate proxy crop activity levels at beginning of each 
year simulated by the model

 The PMP algorithm duplicates the crop mix from the restricted 
calibration model and allows smooth changes in crop levels as 
conditions or policies change



APSIDE data inputs and model features
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 Five proxy crops were considered in the APM ; 

alfalfa (hay and seed crops, rice, irrigated pasture) 

trees (almonds, apples, apricots, olives, peaches, walnuts, 
pistachios, grapes, nectarines, oranges) 

row crops (cotton, sugar-beets, tomatoes, corn, sorghum)

grain crops (wheat, barley, oats)

vegetable crops (beans, melons, lettuce, spinach, onions, garlic, 
broccoli, peas)

 Proxy crops assigned average hydraulic properties of district

 Equations of motion represent lateral flows between districts

 Costs and hydrologic response of irrigation and drainage 
technology substitution built into model



Conceptual model stratigraphy in APSIDE model
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APSIDE model results compared to CVHM 
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 Cost of drainage disposal have increased over time 

 Overall trend of increased almond production driven by 
commodity prices and marketing

 APSIDE model substitutes more water conserving irrigation 
technologies (sprinkler and drip irrigation) for furrow and 
basin flooding techniques

 APSIDE model improves on-farm drainage management by 
recycling irrigation tailwater and subsurface drainage water

 APSIDE model achieved optimal yields and farm income 
largely by reducing irrigation application resulting in deep 
percolation rates that were approximately 50% lower than 
those produced by CVHM2



Comparison of CVHM2/APSIDE deep percolation/upflux
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CVHM2/APSIDE - comparison of deep percolation, upflux
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Summary and Conclusions

 Legacy models sometimes retain assumptions and input 
data that can produce misleading results if not updated and 
verified.  Need to overcome modeler complacency.

 Modelers often ignore factors impacted by human behavior 
and economics.  Simple economics-driven models such as 
APSIDE can provide more realistic future trajectories.

 In this study – deep percolation estimates made with 
APSIDE were about 50% of previous model values.  This 
result has been confirmed by data derived directly from 
canal turnout measurements.


