

Planning and Scheduling for Optimizing Communication in Smart grids

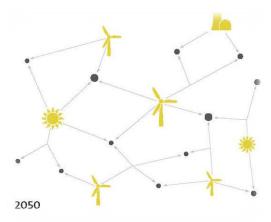
Miroslav Kadlec

Contents

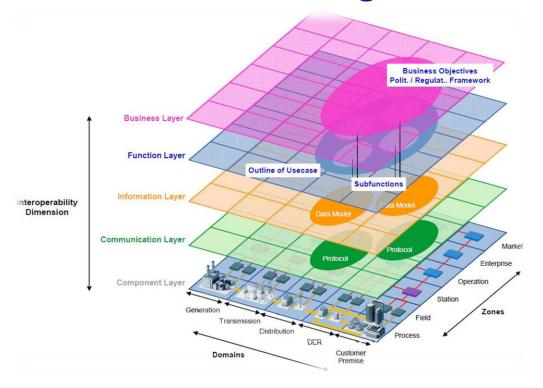
- Smart grids
 - What are Smart grids? Why?
 - Role of communication in smart grid
- Communication optimization opportunities
- Our approach Time-based scheduling
 - Conditions
 - Specific challenges
 - Proposed approach

What are Smart grids? Why?

- Complex approach to enhance electricity distribution network
- Adds:
 - Data analysis systems
 - Compensational devices
 - Communication infrastructure
- Motivation
 - Making the infrastructure more monitorable, controllable, automatic...
 - Adding new functionality


Smart grid functions (1/2)

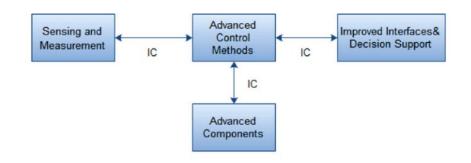
- Automatic Meter Reading (AMR)
 - More data, less effort
- Fault detection/recovery
 - Voltage sags, overloads, blackouts
- Fraud detection
 - Unregistered consumers
 - Unauthorized meter manipulation


Smart grid functions (2/2)

- Load balancing
 - Demand respose
- Distributed Energy Resources (DER)
 - Small household generators "prosumers"
- Renewable source-based generators
 - Unstable electricity production
 - Another load balancing problem

Role of communication in smart grid

ISESS 2017


Role of communication in smart grid

Smart meters

- Measure electricity usage
- Send information

Data concentrators

- Collect and pass metering data from SM
- Pass commands to SM
- Central system
 - Controll and decision making
- Integrated communication

Smart grids - summary

- Smart grids
 - Bring new functionality, solve current problems
 - Rely on communication inftrastructure

Communication

• The quality of communication affects the quality of featured applications

• Space for optimization

Role of communication in smart grid

Message types

- Periodical meter readings
- Ad-hoc meter readings
- Alarms and warnings
- Firmware updates
- TOU (time of use) tables
- Control commands

Communication optimization - opportunuties

Communication infrastructure design

Estimated communication profiles for selected smart grid application

Congestion avoidance

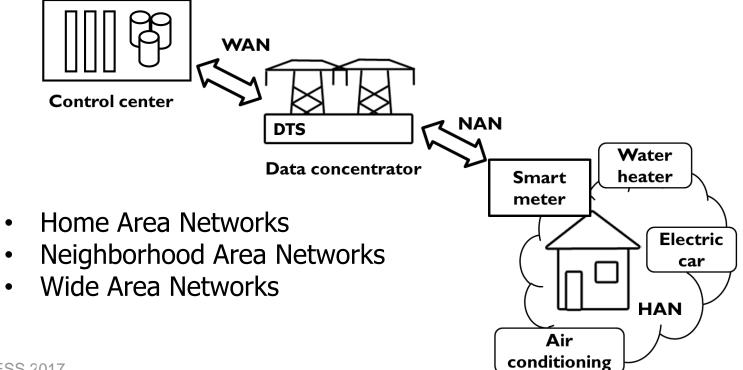
- Transport aggregator
- Quality-aware reduction of the non-essential data
- Communication in sensor networks over cognitive radio

Time-based message scheduling

. . .

Problem definition - general

- We are developing control central system for ČEZ, a. s. (Czech electricity distribution company)
 - Collecting data, sending control commands
 - Advanced algorithms for data mining and decision making
- Huge number of DTSs (tens od thousands in Czech Republic)
- Huge number of messages



Problem definition - general

- Conditions
 - Communication network cannot manitain all communication requests
 - Some messages are preplanned and not time critical
 - Periodical meter readings, firmware updates
 - Need to be scheduled somehow
 - Currently fixed times are assigned
- Goal
 - Optimize the probability that all messages are delivered
 - Reflect message importance and priority
 - React to network conditions

Problem definition - scale

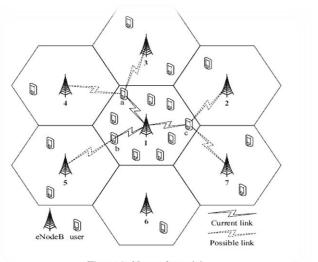
•

•

Problem definition – communication technology

- Wire-line technologies
 - Dedicated fiber optics, DSL
 - Power-line communication
- Wireless
 - Cellular
 - ZigBee, WiMAX, Ethernet

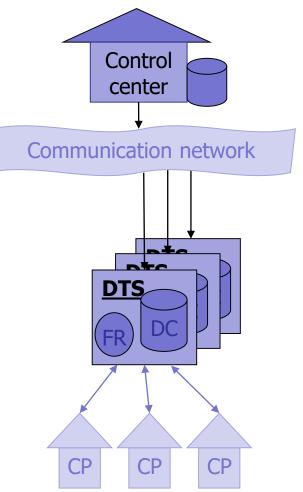
- In the scope of Czech Republic
 - Public cellular network + fiber optics in WAN
 - PLC in NAN



Problem definition – communication technology

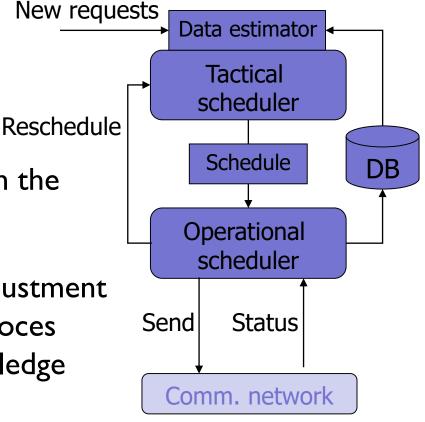
- In case of cellular networks, simultaneous requests sent through same BTS may collide
- External load
- Unexpected network problems

Typically one


Problem definition – communication requests

- Communication requests have requirements
 - Deadline
 - Earliest possible start
 - Importance
 - Controll commands are more critical than periodical measurements
 - Priority preference (as soon/late as possible)
- New requests are comming continuously
- Not every unsuccessfull request should be rescheduled
- Requests vary in data size and duration

Problem definition - summary

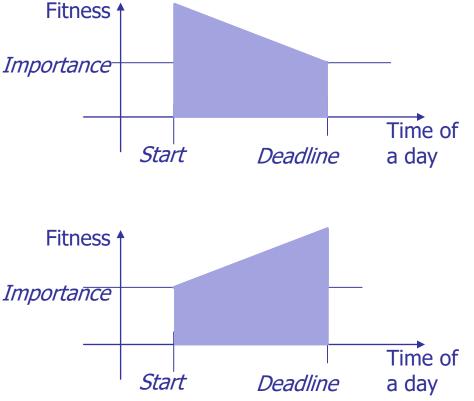

- Huge number of DTSs
- Huge number of messages
- Various communication requirements
- Unreliable communication network
 - Unstable external traffic load
 - Topology does matter but exact data are unaviable

Proposed approach

- Two-level scheduling
 - Tactical scheduler
 - Assigns the request with the execute times
 - Operational scheduler
 - Short term schedule adjustment
 - Invokes rescheduling proces
 - Builds a statistical knowledge base

Knowledge base

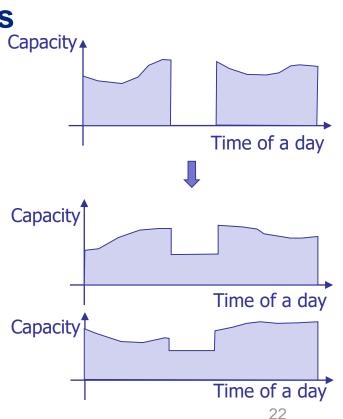
- Lack of data to assume
 - External load on communication infrastructure
 - Data sizes and durations for incoming requests
- I) **Store information** about processed requests
 - Type of request, destination, time of a day, status, duration
 - 2) Search for association rules
 - "Sunday afternoon has higher failure rate in general"
 - "Data size of request type A ranges from X to Y"


ISESS 2017

•

Priority preference function

- For each communication request
 - Aggregates the requirements of the requests
 - Start + deadline
 - Importance
 - Priority preference reference


Mutual interference

- Mutual interference matrix M
 - **Abstraction** of communication network topology
 - N x N for N = number of DTS's
 - Value M(i, j) expresses the chance simultaneous requests sent to DTS's i and j will collide
 - We can use **various data sources** to compute the matrix
 - Statistics of BTS used by each DTS (if available)
 - DTS and BTS location (if available)
 - DTS geographic locations (distances)

Capacities, Partially shared resources

- Communication channel capacity for each DTS
 - Expresses the fitness of communication with given DTS at given time
 - Data sources?
- Partially shared resources (network capacity)
 - Resource reduced after
 - for given DTS
 - for other DTSs proportionally to mutual interference coeficient

Solution search

- Searching the space of candidate solutions (schedules)
 - Schedule = mapping of all requests to times of execution
- Change operators traditional
 - **Shift** particular request, **swap** two requests of similar characteristics
- <u>Conditions and criteria</u>
 - E. g. Minimize the risk of requests collisions
 - Aggregated into **objective function**
- Metaheuristic
 - Hill climbing, Simulated annealing, Genetic algorithm

Future work

- Detailed algorithm design
 - The behavior of the operational scheduler
- Tests design
 - What shows the quality of scheduling
 - Testing environment
 - Virtual control central, pilot project
- Implementation
- Testing and analysis

Summary

- Correct, up-to-date and complete data are an essential prerequisity for smart grid applications
- It is worth to schedule communication requests
 - Bottle-necks in the communication infrastructure
 - Various requirements
 - Big numbers of requests DTSs
- Complex and specific problem
- Approach to solve is porposed

Thank you for your attention

- Miroslav Kadlec
 - miroslav.kadlec@mail.muni.cz

- Masaryk University, <u>https://muni.cz/</u>
- Lasaris, <u>http://lasaris.fi.muni.cz/</u>
- MycroftMind, <u>http://mycroftmind.cz</u>